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A LIAPUNOV FUNCTIONAT, FOR A

MATRIX DIFFERENCE-DIFFERENTIAL EQUATION

Abstract: A quadratic positive definite functional that yields
necessary and sufficient conditions for the asymptotic stability
of the solutions of the matrix difference~differential equation
x(t) = Ax(t) + Bx(t-1) 1is constructed and its structurc analyzod.
This functional, a Liapunov functional, provides the best possible
estimate for the rates of growth or decay of the solutions of

this equation. The functional obtained, and its method of con-
struction, are natural generalizations of the same problem for
ordinary differential equations, and this relationship is
emphasized. An example illustrates the applicability of the

results obtained.

1. Introduction.

In this paper we construct a functional for the determination
of the asymptotic behavior of the solutions of the linear autonomous

matrix difference-differential equation with one delay

x(t) = Ax(t) + Bx(t=-1), t > 0,

where x(t) 1is an n-vector function of time, A and B are con-_=

. White Sectien
stant n x n matrices and Tt > 0. Bt Sectim )

(w}

B r—.

In a recent paper [7] such a functional was constructed

for the special case when x(t) is a scalar function; there, the™ ===

Liapunov functional was obtained as the limit, in an appropriatc "WML Cowe

Bist, "{Ammﬁm




sense, of a Liapunov function constructed by well-known methods
for a difference equation approximation of the original functional
equation. In this paper, we extend the results in [7] so that
they are applicable to the general matrix case; we show that the
general form of the functional in the matrix case is a natural
generalization of the one obtained in [7] and that, with appropriatc
modifications, all of the arguments presented in that paper are
applicable here. Essential to this generalization was the study,
presented in [2], of the existence, uniqueness and structure of
the solutions of a special functional differential equation which
is intimately connected with the construction of the Liapunov
functional presented here.

The Liapunov functionals obtained, and their method of con-
struction, are very natural extensions of the methods used for
the construction of Liapunov functions for linear systems of
ordinary differential equations. We attempt to bring this relation-
ship into evidence.

A simple example illustrates the applicability of the results
obtained, by giving a detailed construction of a functional for a
2 x 2 system.

The problem of the construction of Liapunov functionals for
equations of this type has been previously considered by Repin [8],
Datko [3] and Hale [5,6]. This study is in the spirit of the
previous ones, but is more specific. The functionals obtained here
are more general than the ones used by Hale, and they yield not
only sufficient but necessary conditions as well for asymptotic

stability. The paper of Repin does not seem to us to be correct,




through a simple mistake with profound consequences. Datko [3]
has not pursued the problem of construction to the extent presented

here, but his ideas have had a deep effect on our approach.

2. The Difference-Differential Equation.

Denote by L2([a,b],9?n) the space of Lebesgue square
integrable functions defined on [a,b] with values in é?n, and for
a fixed T > 0 consider the Hilbert space & = P" x LZ([-T,O],Q?n)

0
. 2 S T
with inner product Uysuy,> = Vv, o+ f—T¢1(9)¢2(0)d6, where

u; = (vied;) € &, and the naturally induced norm II(v,¢)JE§ =

T

0
Vv '+ ] ¢T(9)¢(9)d0. With x: [~T,®) - X", for t 0 we denote
-1
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by Xy the function x,: [~1,0] ~» 9?“, where xt(e) X (Eroiie

consider the matrix difference-differential equation

x(t) = Ax(t) + Bx(t-71), t > 0, (2.1}
where A,B are n x n matrices, x(t) 1is an n-vector and Tt > 0,
together with the initial conditions

xo(O) = £, Xg = ¢, (2.2)

where (£,¢) € &.

A solution of this initial value problem is a function
X € Lz([—r,t],é?n) for each t > 0, such that x is absolutely
continuous for t > 0, it satisfies (2.1) a.e. on [0,t] and
x(0) = £, x(8) = ¢(6) a.e. for o € [-1,0]. It is known [1l, 6]
that (2.1)-(2.2) has a unique solution, defined on [~7,®), which

depends continuously on the initial data in the norm of .




The initial value problem (2.1)-(2.2) can be rewritten as

x, (0) x, (0)
d_ £ = of % £2.3)
dt :
X X
(XO(O),XO) = (E,9) € &, (2.4)
where
xt(O) Axt(O) + th(—T)
o/ = axt(O) ' {2+ 5)
X¢ SEe s v 3N

and this operator has a domain, dense in &/, defined by

ANF) = {(£,9) € &| ¢ is A.C. in [-71,0],
¢' € Ly[-7,0], ¢(0) = &}.

The operator & is the generator of the Co-semigroup H(t), where
F(t): &+ & is given by F(t) (&,¢) = (x(t),xt), (x(t),xt) the
solution pair of (2.3), (2.4).

It is known [1,6] that there is a constant <Yy such that the
spectrum of o/ 1lies .n the left-half plane Re(A) < y, and that

for every € > 0 there exist a constant K > 1 such that
(y+€) t
lly(t)ll(%w) < Ke : (2.6)

The spectrum of o/ consists of those complex )\ that satisfy the

characteristic equation




5
det {AI-A-Be *T] = 0. (2.7)
Finally, [5,6], a useful representation of the solutions of (2.1)
is given for every t, T > 0, by
0
xt+T(0) = S(T)xt(O) i J S(T-a-r)th(a)du, (2.8)

=t

where the matrix S is the solution of the matrix initial value

problem

S(t)

S(t)A + S(t-1)B,

QalQa
sy

(2.9

S(0) I, Sty = 0 foxr £t < 0.

We now turn to the construction of a Liapunov functional.

3. A Quadratic Functional.

Associated with the functional differential equation (2.1),
or (2.3)-(2.4), and motivated by the results in [7], we wish to

consider the real symmetric quadratic form on &/, where

(£,9) € &,
T st ¥ .9 260
V(E,p) = EME + e f ¢ (0)Re $(0)de +
Loy
B, r (0 8 (a+1)
+ £ Q(0)E + 2¢ f Q(a+1)e B¢ (a)da (3:1)
-T
¥ T T S (a+B+27)
s 2 f fq, (0)BTQ(B-a)e B¢ (8)dBda,
=T &

where 6 is a real number, M,R are constant n x n real positive




definite matrices and Q(a) is a continuously differentiable matrix
that is assumed to satisfy the initial value problem for the

functional differential equation

(Al caTiota) + a0 B g nen)y O <@ < 1 (3.2)

]

Q' (a)
OI (3.3) +

where the superscript T denotes transpose and QO is a symmetric

9(0) = Q(0)T = @

but otherwise arbitrary matrix.

Evaluation of the Liapunov functional (3.1) along the solu-
tions of (2.3)-(2.4) yields a function of time, which we denote by
v(t) = V(xt(O),xt). This function of time is differentiable along
the solutions, and a laborious but straightforward computation, which
makes use of (3.2) and (3.3), shows that the derivative of this

function along the solutions is given by

|Q.a

V(t) = gg VIx (0),x.) = -28V(x (0),x,) + (3.4)

(o

t t

+ xZ(O)[(AT+GI)Q(0) + Q(0) (A+8I) + (AT+SI)M + M(A+SI) +

+ eS™BToT (1) + &%TQ(1)B + ZeSTR]xt(O)
- e®Th(x, (0),x_ (1),
where
R MB xt(O)
h(x, (0),%, (1)) = [x1(0),-e STx> (~1)] (3.5)
t gl - t L t - ¥

B'M R|[=~e"%Tx, (=)




It is our purpose to show that, through the functional

(3.1) and its derivative (3.4) it is possible to estimate the
asymptotic behavior of the rate or growth on decay of the solutions
for our original functional differential equation (2.3)-(2.4).
For this purpose, appropriate choices must be made for the positive
definite matrices M and R and of the constant ¢, and of the
matrix Q(a) determined by (3.2) and (3.3).

To be more specific, denoting by vy = max{Re A| det[\I-A-~
Q—AT]

B 0}, we wish to show that for every ¢ > 0 and

-§ = y + 2&€ it is possible to choose matrices M,R and Q(a)
satisfying (3.2) and (3.3) so that there exist positive constants

€116, such that

2 2
clll<e:.¢)||d/ S VE) <ol . (3.6)
and
V(E,$) < =28V(E,d). (3.7)

These last relationships imply that {V(C,¢)}1/2 = [Tucz, o) [] is a

norm equivalent to the original norm on & and that, in this norm
¥ i Y i )
||(xt(0),xt)||d/ < [|x0(0),x0||Me Xy (3.8)

whereas, in the original norm on &,

=-8T

<, 1/2
g @ 1, = (32711 xg (0 xg) 1]y €7, (3.9)




These estimates are precisely those stated in (2.6) and are the
best possible ones. It should be noted that the norm induced by
the square root of the Liapunov functional is the‘best possible
one in the sense that it yields (2.6) with K = 1. Moreover, if
Y < 0, the above remarks show that the Liapunov functional (3.1)
yields uniform exponential asymptotic stability.

Consider, first of all, the appropriate choice for the
matrix Qla),; a solution of (3.2); (3.3} for 0 < o < . In [2]
it was shown that equation (3.2) with initial conditions (3.3)
has a unique solution; moreover, it was shown that the linear

vector space of all solutions of (3.2) has dimension n2. Indeed,

introducing the notation

dq (@)
Q(a) = (qij(a)) = 3 = [q*l(u),...,q*n(m)],

q, (@)

where qi*(a) and q*j(u) are, respectively, the ith row and

h

the jt column of Q(a), defining the n2—vector

qla) = (ql*(a),---,qn*(a))T,

and defining the matrix R(a) = QT(T—u), equation (3.2) reduces,
through the use of the Kronecker (or direct) product of two

matrices, to the 2n2 system of ordinary differential equations

q (o Aa+eDT o1 BT 01 N [q(a)
& 2 (3.10)

r(a)_ -1 ® e(ST >

Qalm
5]

B -1 9 (A+(‘SI)'I: r(a)

with the auxiliary condition

b,
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i\ T e

*l,..., *n

vln

a(z) = [£140e0erf 07, 2(5) = (F e W TS

where F 1is an arbitrary n x n matrix. The solution of (3.10),
subject to (3.11), yields solutions Q(a) with n2 parameters
that can always be chosen to satisfy any arbitrary condition of the
type Q(0) = Q(O)T = QO. In [2] the structure of thesc solutions
and simple methods of computation that take advantage of the
particular structure of the equation are presented.

Associated with equation (3.2)-(3.3) is an integral, whose
structure is motivated by a similar integral for ordinary differ-
ential equation. Indeed, let W be a symmetric matrix and let

S(t) be the solution of equation (2.9). Consider the expression

o(a) = J'ST(u)eéuws(u—a)eé(u_a)du. (3.12)
0

since, for every € > 0, |[|S(t)]|]| < Re(Y+&)t for some K > 1 and
since § = -y - 2€, it follows that this integral converges. More-
over, it immediately follows from the definition of O(a) that

6T(—a), Q(0) = 6T(0) and&, since Si(t) satisfies (2.9),

6((1)

that

&' (a) = -G(a) (A+81) - Blatr)ed™s - 8T (a)eW.

1 Since 6'(&) = g& [6T(-a)] for o # 0, we also obtain that

5' (@) = (A+61)T0(a) + BTeSTQT (1-a) + 8T (-a)e’%w.

0,

|

|
‘ t From these relationships it follows, since,for o > 0, S(-a)

i
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that 6(&) satisfies

3" (@) = (AT+s1)3(a) + BTe®T0T(1-a), 0 <o < 7
o _ (3.13)
QT(O) = 9(0) = f ST(u)eéuWS(u)e'Sudu
0
and, moreover, given the continuity of Qf(a), that
0'(0) + §'H0) = (AT+61)H(0) + §(0) (a+s1) + B T (1) + (e’ B
(3.14)

-ST(O)W = -W.

These observations, and the uniqueness of the solutions of
(3.2)-{(3.3), show that 6(m) as defined by (3.12) 1is the unique
solution of (3.2)-(3.3) with the initial conditions prescribed by
the second equation of (3.13).

It is transparent that to each constant symmetric positive
definite matrix W there corresponds a 0 (a) given by (3.12)

and that this is the unique solution of (3.2)-(3.3) with initial

% ot i )
condition Q(0) = Q(O)T = [ ST(u)e6UWS(u)ekudu which is positive
0

definite. Conversely, to each Q(0) = QT(O) = QO, the unique

— solution of (3.2)-(3.3) yields a differentiable matrix function
Q(a) that, through (3.14) defines a unique symmetric matrix W
so that, for this W, (3.12) yields the unique solution to (3.2)-
(3.3) with the prescribed initial conditions. These remarks show

1 that the map W » Q(0), defined by

% 0(0) = J sT (u) €® Yws (u) e%Yau,
} 0

L A st A T Aty SRR 1)




as a map on the space of n x n symmetric matrices is one-to-one,
onto, and it maps positive definite matrices W 1into positive
definite matrices Q(0).

With this particular characterization of the matrix function
Q(a) it is possible to bring into evidence the particular structure
of the Liapunov functional (3.1). Indeed, substitution of (3.12) into
s for Q(a) vields, after some rearrangements and interchanges

of integrals, that

0
VIE.$) = ETME 4 e‘STf oT (8)Re2%%¢ (0) a0
=g

‘2811:

5 0 :
f S (ue s f S(u-a-T)B¢(a)dv‘r ¢ 1S(u) e (3.15)
i

43

0

+
o

J S(u-a-1)B¢ (a) da }du,
-1
or, evaluating this functional on the solutions of our equation,

and using (2.8),

0
V(x,(0),x.) = xg (0)Mx, (0) + Pl f xT (0) Re2S
-

" {-‘Xt(n)d(‘

© £3.16)
268u
+ Joxt+u(0)We xt+u(0)du.

Similarly, in this notation, equation (3.4) becomes

. nape T Iy T
V(xt(O),xt) = 25V(xt(0),xt) + xt(O)[ W+ (A+SI)M + M(A+ST) +

‘ ; R MB x, (0)

4 -
| + 2e5TRIx, (0) + [x; (0) ,-e (STX':(-T)] t . (3.17)
; ' BTM R —e"“x'i(—r)
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Given the nonnegative nature of the last term in (3.16) it

follows that
. —I'SIT ¢ 2 < el o
min (A . (M) ,e Anin RO HTE 0 [ < VIE,0),
yielding a value of Cyr for equation (3.6), given by
L gk -8t
c; = mln(Amin(M),e Amin(R))- (3.18)

Similarly, since, from (2.6),

(+ €
qu(ml[%n < H(xu(O),xu)Hw < ke O )ul“xo(O),xO)Hw .

it follows that

A (W)
o [8]1 max 2 = 2
V(E,0) < [max{r _ (M),e Bay Rl b # —wmee K JH(«,,@)HM
yielding, for equation (3.6), a value of c¢, given by
X (W)
= [8]1 max 5
c, max[Amax(M), e AmaX(R)] + —— Lo (3.19)

It remains to be shown that equation (3.7) holds. For this

purpose inspection of equation (3.17) indicates that it is necessary
and sufficient to show that it is possible, by appropriate choices

of positive definite matrices W,R and M, to have the matrix
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W = (B+EI ™M ~ M(A+SI) - Re®" MBe®T
G = £3.20)
BTMe(ST RCOT
positive semidefinite. But this is always possible; indeed, a

particularly simple choice of such matrices is to let W,R and
M to be nonnegative multiples of the identity matrix, i.e.

== = k = 3 1 4 b i3
M T E PRI and W kwI With Pw kR >> 1, the matrix G
is clearly positive definite, hence its determinant is positive,
and the matrix will become semidefinite only when the determinant
vanishes. But, for the above choice of matrices we have

det(G) = det(kple’ydet(k 1 - (a+aT) - 261 - ®T(kyr + 1 B7B) 1

kg

: o
Letting kR xmax(a B) and

5
k. = max{0,h__ (AeAT) + 28 + 270 18"m) ),
W max max

then (3.20) is positive semidefinite and tiierefore, for thesec

choices of M,R and W,
Vix, (0),x.) = =28V(x (0),x.). (3.21)

It is to be remarked that, with these choices, the Liapunov func-

tional constructed is particularly simple and reduces to
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0
S - 8t T T 260
V(xt(O),xt) = xt(O)xt(O) + e Amax(B B) J Txt(o)xt(o)c do +
i 0T / e
+ max{o,xmax(A+A ) + 28 + 2e Amax(B B (3, 22)

ZGSds.

& fl'
foxt+s(0)xt+s(0)e

This functional is a direct generalization of that used in [7], and
generalizes those used by Hale [5,6] and Datko [3]. We recapitulate

the above results in the form of a

Theorem: Given the retarded equation x(t) = Ax(t) + Bx(t-71)
and the Liapunov functional V given by equation (3.1), if

-AT

y = max{Re )| det[AI-A-Be ] = 0} and € > 0, then there

exist constant positive definite matrices M and R and
a differentiable matrix Q(a), 0 < a < T with 0Q(0) = Q(O)T

such that the functional V 1is positive definite, bounded

above, and Q < 2 (y+€) V.

Of course, if y < 0, the above result implies exponential
asymptotic stability; moreover, the rate of decay is precisely the

* expected one.

g 4, A Comparison with Ordinary Differential Equations.

It is our object, in this section, to point out the intimate
relationship between the results obtained for our functional equation

and the classical results for the construction of Liapunov functions

for ordinary differential equations.




Recall, [4], that given the system of ordinary differential

equations

x(t} = Cxit}, (4.1)
where C 1is an n x n matrix, a Liapunov function for this
system can be always taken as the quadratic form

i
V(x) = xPx, (4= 23

where F is a positive definite matrix. Morcover, if
y = max{Re A| det[AI-C] = 0} and if, for € > 0, -§ = y + 2€,
then given an arbitrary positive definite matrix W, the algebraic

equation
T
(C+8I) P + P(C+S8I) = =W, (4.3)

has a unique solution P which is positive definite. This matrix P,
if used in (4.2) along the solutions of the differential equation

(4.1) yields, upon differentiation, that
b )
S Vix(t)) = =28Vv(x(t)) - xTWx < =28V(x(t)). (4.4)

Furthermore, the unique positive definite solution P of (4.3) can

be obtained as the integral

® T
P = f eA uesuWeAuedudu. (4.5)
0
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Let us now bring into evidence the relationship between the
results obtained in the previous section and these results. The

functional differential equation under consideration is

x(t) = Ax(t) + Bx(t-1), &=, (4.1")

Oonce again, we assume that Yy = max{Re )| det[XI-A—Be—AT}

= 0}
and, for € > 0, let -8 = y + 2€. The Liapunov functional is

then of the form
T st (0 T 250
V(xt(O),xt) = xt(O)Mxt(O) + e _Txt(O)Re xt(O)dO (4.2%})

0
+ xE(O)Q(O)xt(O) + 2x€(0) J-TQ(G+T)eS(a+T)BXt(T)dD ¥

6(a+8+2T)B

0 0 T
+ 2 J J x;(a)B Q(R-a)e xt(B)dew.

il (81
The choice of the positive definite symmetric matrices M and R
in this expression is rather arbitrary. Their purpose is to insure

the strict positive definiteness of the functional on the Hilbert

space &; it should be noted that if M R = 0, the functional
(4.2') is positive, but does not satisfy a relationship of the type
S ’ 2 g ~ -~ 1
V(xt(O),xt) > clll(xt(O),xt)IkV for c,y ° 0. The requirement that
the matrix G of equation (3.20) bhe positive semidefinite is always
satisfied for M= R =0 and W positive semidefinite. Given an

arbitrary positive definite matrix W, it is always possible to

select positive definite matrices M and R so that G 1is positive

semidefinite.
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The choice of the continuously differentiable matrix O(«x),
0 < a <1 1is critical. It must satisfy, given an arbitrary

positive definite matrix W, the functional equation

T

eGTQT(T—u), DR U < Ty

6" ta) = (K w81)0la) B

(4.37)
ot (0),

0(0)

with the condition

(AT+61)Q(0) + Q(0) (a+sT) + B e’ ol (1) + g1’ = -w. (4.3%

In the previous section it was shown that such a Q(a) always
exists and is unique.
With such a choice of Q(a), then one obtains that, along

the solutions of the functional differential equation (4.1"')
y = '
V(xt(O),Xt) < 26V(xt(0),xt). (4.4")

Moreover, such a matrix Q(a) exists, is unique, and a representation

of it is given by the integral
Q(a) = J sT (u) e¥Uus (u-a) e® (U= gy, (4.5")
0

where S(t) is the solution of equation (2.9).
The strong relationship between the unprimed and primed
equations is now clear. 1Indeed, note that for 1t = 0, the matrix

C in (4.1) becomes A + B and the matrix P in (4.3) becomes
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0(0) + M and all the primed equations become the unprimed ones.

Equations (4.3') and (4.3") are of a much more complex
nature than the familiar algebraic equation (4.3). However, in
spite of its appearance, the linear vector space of the solutions
of (4.3') is not infinite dimensional but, as was pointed out in
the previous section, has dimension n2. Hence, although the
problem of construction of the Liapunov functional for the func-
tional differential equation does not reduce to the solution of
an algebraic equation such as (4.3); it reduces to the noiutinn ot
a lineaf differential equation, equation (3.10), which is

accomplished without difficulty.

5. An Example.
To illustrate the application of the method developed here,

we wish to briefly outline the construction of an appropriate
Liapunov functional for a simple two dimensional example. For

this purpose, consider the system

g -5 0 4 2
xX(t) = Ax(t) + Bx(t-1) = x(t) + x(t-1), LR
g 2 0 0
where 1 = 6. 1In the notation of Section 3, the value ¢ = ;ﬁ

is selected as is indicated by a simple examination of the
characteristic equation of the system. For the construction of
the Liapunov functional (3.1), appropriate positive definite
matrices M and R must be selected and a matrix function Q(a)
that satisfies (3.2), (3.3) and (3.14) must be determined given a

preselected positive definite matrix W.
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As indicated in Section 3, an appropriate choice for the

matrices M,R and W 1is given by

=
]

I,

T . pr——
/Xmax(B B) I = #20 I, (e,

=
]

o T St / T o Ty
W = max{o,kmax(mz\ ) + 28 + 2e .Amax(B RIT = 7. 946F = k. T.

All that remains is to determine the unique matrix function
QO(a) that satisfies (3.2), (3.3) and (3.14). The general form
of th%s matrix function is determined by obtaining the solutions
of the differential equation (3.10) following the methods indicated
in [2]; in a straightforward although somewhat lengthy computation

one obtains that the general form of this matrix

NS o<, (5.3)

is of the form

-
qll(q) = 32 er(é) (a=1/2) + gl(d)e-vf((s)(a—T/Z)‘l'
R
agy () = 8, |ny,(8)e/F @=t/2) gl(s)nZl(G)e—/f(é)((1—1/2)J :
—
+ By e(z‘d)(G-T/Z)'
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qzl(“) na Gle(“5+6)((l—l/2) + 82h21(6)evf(nﬁ)(<t~|/2) F

+

91(6)n12 (,g)e“ff((S) (OL-T/ZH

+
(92]

U Pl e i (

and

v i s s x s
g0 ) = Bz[ggz(é)e R i st T/zi} "

+

(8-2) (a=71/2) (2-6) (a=1/2)
B3e ’ + B4nll(6)[g +

e

91(6’9_(2—6)(“-T/2i]-

In these expressions the indicated functions of ¢ are, respectively,

given by
£(8) = (5-8)% - 16?97,
gl(\s) - ‘f(d) g,l_(s—d) :
~ Y 264e
9380 = ~ 5% »
v {5+5)
o =28
Mg tel ==
8t
nlz(é) e 2e
[2-6-/f(6)]gl(6)
2e6Tg1(6)
n21(6) = ;
2-6+/E(8)
:ié::::!!llll!!!!!!!!!!EE!!lllllllllllllll!”"'““* e




=1

and

”22(6) = ”12(6)”21(6) .

The constants 61,82,83 and B4 are to be determined from the

four equations obtained from the relation Q(0) = Q(O)’1 (Lae.,
dy,(0) = q,,(0)) and from equation (3.14) (i.e., Q'(0) + Q' (0)"
= =W = —kwI).

Solution of these four linear equations for the indicated

[

value of § = 35 yields the values

e =5 i =1
g, = -0.115.10 kW' By = 0.321.10 Ky
(5.6
Al -3, R =3
By = 0.242.10 Kigr By = 0.622.10 Kig+
With these values, it is easily computed that Q(0) = Q(O)T, and

that this matrix is positive definite.




(1]

[3]

(6]

(7]

[8]

22

REFERENCES

Borisovic, J.G. and A.S. Turbabin, On the Cauchy Problem
for Linear Nonhomogeneous Differential Equations with
Retarded Argument, Soviet Math. Doklady 10, 1969, pp. 401-405.

Castelan, W.B. and E.F. Infante, On a Functional Equation
Arising in the Stability Thecory of Difference-Differential
Equations, to appear, Quarterly of Applied Mathematics.

Datko, R., An Algorithm for Computing Liapunov Functionals
for some Differential-Difference Ecuations, Ordinary
Differential Equations, 1971 NRL-MRC Conference, Academic
Press, 1972, p. 387-398.

Hale, J.K., Ordinary Differential Equations, Wilev-
Interscience, 1967.

Hale, J.K., Functional Differential Equations, Appl. Math.
Science Series, Springer-Verlag, 1971.

Hale, J.K., Theory of Functional Differential Equations,
Springer-Verlag, 1977.

Infante, E.F. and J.A. Walker, A Liapunov Functional for a
Scalar Differential-Difference Equation, submitted for
publication.

Repin, I.M., Quadratic Liapunov Functionals for Systems
with Delays, Prikl. Mat. Mech. 29, 1965, pp. 564-566.




